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Comment on “Surface critical exponents of self-avoiding walks on a square lattice
with an adsorbing linear boundary: A computer simulation study”
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We present simulations of very long two-dimensional polymers near a linear adsorbing boundary
which give results in conflict with recent simulations by Meirovitch and Chang [Phys. Rev. E 48, 1960
(1993)], but agree with earlier studies of very short chains.

PACS number(s): 36.20.Ey, 02.70.—c, 05.70.Jk, 64.60.Kw

Recently, there has been much progress in understand-
ing polymers in two dimensions, partly due to analytical
results related to conformal invariance. In this Com-
ment, we shall be concerned with the behavior of self-
avoiding walks (SAW’s) with one end attached to an at-
tractive surface. The partition sum for an N-step SAW is
defined as Z{’= 3N _ Cy ,,e™, where Cy,, is the num-
ber of configurations having m bonds in the surface, and
q =€/kyT, €>0 being a binding energy per monomer.

At the spsecial point [1], the exponent y; defined via
Z{P~u"N"1"" is known to be y§= 2 =1.4531 [2], while
the crossover exponent ¢, which governs the scaling of
the mean energy, Ey~N¥, should be equal to =1 [3].
These predictions were confirmed both by exact enumera-
tions [4] and by transfer matrix studies [2,5]. On the oth-
er hand, a different value ¢ =0.5621+0.020 was found in a
recent Monte Carlo study with very high statistics [6]. In
that paper, a slightly different critical value of ¢ was also
found, g,=0.722+0.004 as opposed to 0.713-0.715 in
Refs. [2,4,5]. Since Monte Carlo simulations use much
longer chains than either exact enumerations or transfer
matrix methods, this raises the problem of whether there
are not large corrections to scaling that were overlooked
in [2,4,5].

2-d SAW'’s attached to surface,
2 T T

special point

The longest chains in [6] had N=260. By studying
even longer chains, with N up to N, =2000, we want
to show in the present comment that the claims of [6] are
wrong, and that the results of [2,4,5] are indeed correct.

To generate SAW’s, we use the recursive implementa-
tion of the enrichment method described in detail in [7].
It is similar to the recursive method used in [8,9]. Our
method generates samples with roughly the same number
of walks for all N between 1 and N_,,, from which we
can compute immediately Z§). An important aspect is
that it allows for perfect importance sampling with exact-
ly the right thermodynamic bias, i.e., it immediately pro-
duces samples in which each chain is included with a
probability exactly proportional to its Boltzmann weight
e™. Thus all averages are simply unweighted averages
without any further systematic corrections. This distin-
guishes it from most other methods as, e.g., the Rosen-
bluth and Rosenbluth method [10] or the method used in
[6]. In these, different configurations can have very
different weights, whence thermal averages are dominat-
ed by only a few configurations unless one uses huge sam-
ples. No such problems arise with our method, unless we
use much lower temperatures or much longer chains. Fi-
nally, we mention that we used a carefully checked multi-
tap feedback shift register random number generator
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FIG. 1. Log-log plot of Ey/V'N against N,
for five equally spaced values of g in the range
0.706 (lowest curve) to 0.722 (highest).
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FIG. 2. Log-log plot of Z\"'/u™ against N,
for the same values of g as in Fig. 1.
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(RNG) [11], as simpler RNG’s perform poorly in similar
problems [9].

We have performed runs at five different values of ¢
(0.706,0.71, . . . ,0.722), with ca. 1.5X10° walks for each
g. Within each run, the walks are not statistically in-
dependent, as discussed in [7]. But data for different ¢’s
are strictly independent, whence the consistency between
different curves in Figs. 1-3 gives a direct hint as to the
size of our statistical errors. The number of independent
SAW’s of length N in each sample decreases asymptoti-
cally as ~1/N. For each value of g it is larger than 6000
at N =N_,.. This number might sound very modest, but
we verified that statistical errors were indeed inversely
proportional to its square root, with coefficients of order
1. The total CPU time was 60 h on a fast workstation
(HP730), compared to more than 2000 h on an IBM
340/6000 (which has roughly half the speed of an HP730)
in [6].

In [6], the value of g, was estimated from a plot of
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In(Ey /N) against InN. In Fig. 1 we show a similar plot
(we assume kzT=1). We see that indeed the straightest
curve in the interval 10 <N <260 (the range used in [6])
would be obtained with ¢ ~0.722, and this would give
¢~0.56. But taking our full range we see that this esti-
mate would be wrong due to large corrections to scaling.
Our estimate from Fig. 1 is instead g.=0.7131£0.002,
¢=0.5010.01, in perfect agreement with [2,4,5].

In order to check this and to estimate yj, we show in
Fig. 2 our values of Z{}’/u". Here we used for u the very
precise estimate of [12], p=2.638 159(1). We find rough-
ly the same critical value of g as above, giving us our final
estimate g,=0.712%£0.001 and y{=1.46%+0.01. If we
would insist on g,=0.722, we could produce a nearly
straight plot by increasing pu to a value close to 2.639.
Such a value was indeed measured in [6], but the very
large error bar given it there would have suggested that
the precise value of u is not important for the analysis of
the data. Again we see that this might be true for the
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FIG. 3. Similar to Fig. 1, but for the ratio
Py
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moderately long chains of [6], but that it is definitely not
true anymore for the chains studied in the present work.

Finally, we show in Fig. 3 the ratio Z"/Z}, where
Z MV is the number of walks having both ends on the sur-
face. It follows a scaling law similar to that for Z}, but
with ¢ replaced by another exponent y{,. From Fig. 3
we can read off y]—y];=0.64+0.01. Together with the
above value for y§ and the exact values of the exponents
v and v for two-dimensional (2D) SAW’s in the bulk, this
gives perfect agreement with the Barber scaling relation
[13] 2.1040.014=2y]—y}; =y tv=2 +3=2.094.

Our conclusion thus is that the critical exponents for
the special point in two-dimensional polymer adsorption
agree with their theoretical predictions. There are strong
corrections to scaling, but they were correctly taken into
account in the exact enumeration and transfer matrix

studies of [2,4,5], where the absence of statistical fluctua- -
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tions allows very sophisticated extrapolations. In order
to obtain similarly good results in a Monte Carlo study,
one has to take much longer chains. Though the chains
in [6] were roughly an order of magnitude longer than
those in the exact enumerations of [4] and had very high
statistics, this was not enough. Only by adding another
order of magnitude in the chain length were we able to
see them clearly—in spite of much lower statistics. This
demonstrates that it is important to simulate very long
chains. Thus a method like that used in [6] (whose
efficiency decreases exponentially with chain length, al-
beit slowly, and which puts unequal weights on different
chains) is inherently less suitable than the present one,
whose efficiency decreases as 1/N and which puts the
same weight on each chain—though it can be very useful
in other circumstances.
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